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ABSTRACT

Climate normals are traditionally calculated every decade as the average values over a period of time,

often 30 years. Such an approach assumes a stationary climate, with several alternatives recently in-

troduced to account for monotonic climate change. However, these methods fail to account for interannual

climate variability [e.g., El Niño–Southern Oscillation (ENSO)] that systematically alters the background

state of the climate similar to climate change. These effects and their uncertainties are well established, but

they are not reflected in any readily available climate normals datasets. A new high-resolution set of

normals is derived for the contiguous United States that accounts for ENSO and uses the optimal climate

normal (OCN)—a 10-yr (15 yr) running average for temperature (precipitation)—to account for climate

change. Anomalies are calculated by subtracting the running means and then compositing into 5 ENSO

phase and intensity categories: Strong LaNiña,Weak LaNiña, Neutral, Weak El Niño, and Strong El Niño.
Seasonal composites are produced for each of the five phases. The ENSO normals are the sum of these

composites with the OCN for a given month. The result is five sets of normals, one for each phase, which

users may consult with respect to anticipated ENSO outcomes. While well-established ENSO patterns are

found in most cases, a distinct east–west temperature anomaly pattern emerges for Weak El Niño events.

This new product can assist stakeholders in planning for a broad array of possible ENSO impacts in a

changing climate.

1. Introduction

Member countries of the World Meteorological

Organization (WMO) have been producing 30-yr cli-

mate normals for more than 75 years under mandated

regulations, with many countries recomputing 30-yr

climate normals every 10 years (Arguez and Vose 2011).

However, U.S. climate has experienced very rapid and

dramatic changes during the last 30 years, and thus it has

been suggested that the 30-yr normals are of limited

use for design, planning, and decision-making purposes

(Livezey et al. 2007; Arguez and Vose 2011; Wilks and

Livezey 2013). New recommendations were made to the

WMO and national climate services to formulate newCorresponding author: Anthony Arguez, anthony.arguez@noaa.gov
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policies for changing climate normals, as well as for

the National Oceanic and Atmospheric Administration

(NOAA) to initiate a program for improved estimates

and forecasts of official U.S. normals. The latter would

include an operational implementation of a system blend-

ing trend analysis, optimal climate normals (OCN;

Huang et al. 1996; a variable-length normal) or a quasi-

linear fit, and separating the effects of important modes

of interannual climate variability like El Niño–Southern
Oscillation (ENSO). Following these recommendations, a

workshop was held in Asheville, North Carolina, in

2012 (Arguez et al. 2013) with a total of 50 participants

representing the energy industry, state regulators, and

federal climate scientists to discuss the industry’s need

for alternatives to the traditional 30-yr climate normals.

Consensus emerged from workshop participants that

such alternatives were indeed necessary. Additional

requirements gathered from load forecasters and ag-

ricultural interests suggested that climate normals con-

ditioned by ENSO phases would also be readily used by

industry stakeholders.

Many studies over the past three decades have docu-

mented relationships between ENSO phase and im-

portant climate phenomena, including temperature

and precipitation patterns in North America (e.g.,

Horel andWallace 1981; van Loon andMadden 1981;

Rasmusson andCarpenter 1982; Ropelewski andHalpert

1986, 1987, 1989). Most studies have relied on com-

posites keyed to a particular index such as the Southern

Oscillation index (SOI) or the Niño-3.4 index of sea

surface temperature (SST) to highlight regions of strong,

consistent relationships to theENSO cycle (e.g., Ropelewski

and Halpert 1996).

NOAA’sClimatePredictionCenter (CPC) issues official

seasonal forecasts for U.S. temperature and pre-

cipitation for leads out to 12.5 months. Statistical input

for the seasonal forecasts is obtained from OCN and

canonical correlation analysis (CCA; e.g., Barnston and

Ropelewski 1992), while dynamical input comes from

the National Centers for Environmental Prediction

(NCEP) coupled model (Ji et al. 1998). The skill of

CPC forecasts is primarily driven by climate change

(especially for temperature) and ENSO (especially for

precipitation). However, the ENSO influences on tem-

perature and precipitation trends over the United States

have been changing (Mo 2010). Comparison of the early

period (1915–60) versus recent period (1962–2006) com-

posites suggests the dipole in temperature between the

north and south during warm ENSO winters is

weakening. Recently eight different anomalous SST

patterns have been identified (Johnson 2013; Guo

et al. 2017) using a neural-network-based cluster-

ing technique known as self-organizing maps (SOM).

The impact of each of the SOMSST patterns on winter-

mean temperature and precipitation anomalies over

North America reveal distinctive teleconnection patterns

associated with different flavors of ENSO conditions.

Although the strength of any two individual ENSO

events may be similar, each ENSO event is unique in

character. For instance, the recent 2015/16 extreme El

Niño event was comparable in strength to the 1997/98

extreme event, and yet their impacts on temperature

and precipitation patterns over the U.S. mainland were

different (Paek et al. 2017). The two El Niño events

differed in their SST evolution (central Pacific versus

eastern Pacific) and the retreat of the anomalous SST

pattern during the decay phase. This shows that char-

acterizing the relationship between ENSO events, as-

sociated climate teleconnections, and regional seasonal

climate prediction can be challenging, and highlights

the importance of understanding the distribution of

ENSO phase impacts rather than relying solely on

mean composites.

In the present investigation, we document our ap-

proach for calculating ‘‘ENSO normals’’ of temper-

ature and precipitation for the contiguous United States

(CONUS) in a manner that accounts for background

climate change trends. By providing this product at

a ;5-km resolution and including quantile values in

addition to mean composites, we hope to empower

stakeholders to better prepare for forecasted ENSO

conditions for their areas of interest.

2. Data

a. ONI

The state of ENSO can be determined in a number of

ways, using sea level pressure (SLP; Walker and Bliss

1932, 1937), SST (Rasmusson and Carpenter 1982),

outgoing longwave radiation (OLR; Chiodi andHarrison

2013), or a multivariate ENSO index (MEI; Wolter and

Timlin 2011). The most commonly used index is Niño-3.4
(Trenberth 1997), the average SST anomaly covering the

region 58S–58N, 1208–1708W (Barnston et al. 1997). To

filter out month-to-month variability, CPC uses the

oceanic Niño index (ONI): a three-month running

average of Niño-3.4. The ONI as produced by CPC is

based on monthly anomalies derived using 30-yr base

periods centered on the beginning year of each 5-yr

period. For example, the anomalies for each month in

the 1996–2000 period are calculated using the 30-yr

base period 1981–2010. As years move toward the

present, the latest available base period, 1985–2015, is

applied until the next update cycle in 2021. In this study,

the 1951–2017 ONI values used are those calculated by
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CPC (2018) in the manner described using the latest

Extended Reconstruction Sea Surface Temperature,

version 5 (ERSSTv5; Huang et al. 2017). The opera-

tionally updated data, reported to the hundredths place,

is accessible from the CPC website.1

b. Gridded monthly climate data

Many efforts to generate composite patterns of cli-

mate anomalies associated with ENSO have begun with

coarse-resolution monthly gridded data formed from

one of several national or global station networks. The

CPC El Niño and La Niña temperature composites

(CPC 2012), for instance, are based on a 0.58 3 0.58
latitude–longitude-resolution gridded dataset (Fan and

van denDool 2008). One exception to this was the effort

of Dourte et al. (2017) to construct ENSO composite

anomalies for agricultural applications (AgroClimate

2016) using the approximately 4-km-resolutionParameter-

Elevation Regressions on Independent Slopes Model

(PRISM) dataset (Daly et al. 2008). In their approach,

gridded anomalies were calculated using a base period

of 1950–2013 and then combined into El Niño, Neutral,

and La Niña composites by month based on the MEI

determination of the ENSO state. Maps of tempera-

ture and precipitation anomalies are provided by month

and ENSO state and combined with the 1950–2013

averages for applications requiring temperature and

precipitation values.

This paper describes an improved process for gen-

erating ENSO normals for the United States, starting

with the treatment of the precipitation and temperature

data inputs. We utilize nClimGrid, a ;5 km 3 ;5 km

monthly gridded climate dataset developed by Vose

et al. (2014). The temperature grids are based on over

10 000 stations and the precipitation grids on over

14000 stations that have been subject to advanced qual-

ity control procedures in the Global Historical Clima-

tology Network—Daily (GHCN-Daily) dataset (Durre

et al. 2010; Menne et al. 2012). The maximum and min-

imum temperature station records were also subject to

pairwise homogenization (Menne and Williams 2009).

Climatologically aided interpolation for eachmonth and

data type was based on 1981–2010 normals grids com-

bined with monthly anomaly fields (Vose et al. 2014).

The nClimGrid dataset2 is available from NOAA’s

National Centers for Environmental Information.

3. Methodology

CPC defines ENSO events as five consecutive 3-month

seasons [e.g., October–December (OND), November–

January (NDJ), December–February (DJF), January–

March (JFM), February–April (FMA)] during which

ONI exceeds 10.58C for El Niño and 20.58C for La

Niña. Our approach is inspired by theirs but with some

key differences. Many studies note differences in im-

pacts between Strong and Weak events, so we chose

to stratify ENSO into five groups: Strong La Niña,
Weak La Niña, Neutral, Weak El Niño, and Strong

El Niño.
For each overlapping 3-month season, we use CPC’s

ONI values to stratify ENSO phase and intensity using a

terciles approach. In this method, El Niño events are

defined as the top one-third of theONI distribution for a

given season, La Niña events are defined by the bottom

one-third, and Neutral events are defined as the middle

third. El Niño and La Niña events are further delineated
for intensity whereby the warmest half of all El Niño
events for that season (i.e., the warmest sextile overall)

are designated as Strong events and the coolest half

are designated as Weak El Niños. In a likewise man-

ner, the coolest half of all La Niña events are diagnosed
as Strong La Niñas and the warmest half are diagnosed

as Weak La Niñas. The corresponding thresholds are

shown in Table 1, and differ from the fixed 0.58C thresh-

old used byCPC to defineENSOevents.After evaluating

the instantaneous ENSOphase for each season, we adopt

the CPC 5-month persistence criterion to arrive at des-

ignations of Strong El Niño (2), Weak El Niño (1),

Neutral (0), Weak La Niña (21), and Strong La Niña
(22) events. For individual seasons in which the 5-month

persistence criterion is not met, Strong events are

TABLE 1. ONI thresholds (8C) used to identify ENSO categories of Strong La Niña (22), Weak La Niña (21), Weak El Niño (1), and

Strong El Niño (2).

ENSO category DJF JFM FMA MAM AMJ MJJ JJA JAS ASO SON OND NDJ

22 20.87 20.75 20.64 20.52 20.57 20.57 20.56 20.66 20.80 20.81 20.95 20.98

21 20.51 20.44 20.26 20.29 20.26 20.29 20.30 20.29 20.36 20.40 20.49 20.51

1 0.55 0.39 0.28 0.29 0.32 0.32 0.31 0.34 0.39 0.44 0.54 0.63

2 1.03 0.69 0.59 0.66 0.64 0.65 0.72 0.70 0.79 0.95 1.19 1.13

1 http://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt. 2 ftp://ftp.ncdc.noaa.gov/pub/data/climgrid/.
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FIG. 1. Mean monthly maximum temperatures (8C) for Orlando (28.52088N, 81.39588W) from 1951 to 2017

for (a) December, (b) January, and (c) February. The color of each circle indicates the ENSO phase of the

corresponding DJF season: Strong La Niña (purple), Weak La Niña (blue), Neutral (gray), Weak El Niño
(yellow), and Strong El Niño (red). The solid black curve indicates the running 11-yr average with estimates

for 2013–17 computed following Mann (2004). (d) Associated quantile values (8C) of January temperature

anomalies for each ENSO phase. Solid (bold) horizontal black lines indicate the 10th and 90th (25th and 75th)

quantiles. The composite mean is shown as the middle horizontal bar color-coded as in (a)–(c).

1384 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 58

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/25/22 02:07 PM UTC



downgraded to Weak (provided they meet the per-

sistence criterion for the Weak threshold) and Weak

events are downgraded to Neutral.

A drawback to most past efforts to generate ENSO

composites or climatologies is the use of climate normal

base periods that are static. Over large areas of the

United States, precipitation and especially tempera-

ture have been trending in recent decades, and these

trends may distort the patterns of resulting ENSO

climatologies for current times. Therefore, we calculate

‘‘detrended’’ anomalies via a variant of CPC’s OCN

method using 11-yr moving windows for both maximum

and minimum temperature and 15-yr moving windows

for precipitation. Our approach differs from the opera-

tional CPC method in that our anomalies are centered

on each target year in the computation, whereas CPC

uses an OCN that is updated every 5 years without ex-

tending the time series. To calculate centered values in

the earlier part of the record, we utilize nClimGrid data

from the 1940s to complete the convolution. For the

most recent period, anomalies are determined using the

Mann (2004) approach, extending each gridcell-specific

series forward in time according to constraints for min-

imum norm, slope, or roughness and then selecting the

method that minimizes the resulting root-mean-square

error. To avoid generation of negative precipitation

values, the roughness method is not included for pre-

cipitation analyses.

The detrended anomalies are composited for each

of the five ENSO categories for each grid point, month,

and variable. Temperature composites are reported in

degrees Celsius, whereas precipitation composites are

computed in percent of normal space and subsequently

reported in percent deviations from the corresponding

OCN value. Note that we report composites for each

month, not season. For example, we utilize detrended

December, January, and February anomalies to es-

timate the January composites (see Figs. 1a–c for an

illustration for Orlando, Florida). Furthermore, in ad-

dition to the mean composite, we also report the 10th,

25th, 75th, and 90th quantiles (see Fig. 1d) of the dis-

tribution for each set of monthly anomalies conditioned

by ENSO category. Therefore, our results capture

the expectation and a broad range of possible out-

comes for a monthly anomaly for a particular ENSO

category. Last, to arrive at the ENSO normal, the

monthly temperature (precipitation) OCN value is

added to (scaled by) the corresponding composite

value.

4. Results

The seasonal ENSO categories from 1950 through

2017 as determined by the proposed tercile method

are shown in Fig. 2. La Niña, Neutral, and El Niño
events comprise 31%, 38%, and 31%, respectively, of

all overlapping 3-month seasons (see Table 2). The

counts for La Niña and El Niño are further divided

equitably between Weak and Strong events. The re-

sults are qualitatively similar to CPC’s fixed 0.58C
threshold, with the main difference being that the

tercile method produces somewhat fewer Neutral

seasons and more La Niña/El Niño seasons. Both

methods have higher percentages of El Niño and La

Niña events in the boreal fall and winter than the

spring and summer, but that difference is larger with

CPC’s fixed threshold.

a. DJF composites

The DJF Tmax composites (Fig. 3) reveal the well-

known ENSO impacts for the Strong phases, with a

sharp north–south or northwest–southeast gradient

FIG. 2. Seasonal ONI (positive in red, negative in blue) and ENSO classifications. CPC

ENSO events are shown by black dashed boxes. Classifications for the current study are shaded

in gray: Strong La Niña (22), Weak La Niña (21), Neutral (0), Weak El Niño (1), and Strong

El Niño (2).
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across CONUS, with cooler conditions in the north-

ern (southern) tier during La Niña (El Niño). The
Weak El Niño case shows a marked east–west gradi-

ent, with cool anomalies in the east and warm anomalies

in the west. Notably, the spatial correlation coefficient

between the Strong and Weak El Niño composites is

0.01. The Weak La Niña composite pattern, on the

other hand, reveals a largely statistically insignificant

signal, but one that is anticorrelated with the Weak

El Niño composites (r 5 20.75) and positively corre-

lated with the Strong La Niña impacts (r 5 0.70).

The DJF Tmin composites (Fig. 4) show a similar

FIG. 3. ENSO composites of DJF mean monthly maximum temperature for (a) Strong La Niña, (b) Strong

El Niño, (c) Weak La Niña, and (d) Weak El Niño. Hatching indicates values outside of the near-zero interval

(white) that are not significantly different from zero at 90% confidence.

TABLE 2. Counts of ENSO events by overlapping 3-month season using our terciles approach and the CPC method. For the terciles

approach, the events are categorized as Strong La Niña (22), Weak La Niña (21), Neutral (0), Weak El Niño (1), and Strong El Niño (2).

For the CPC method, LN 5 La Niña, N 5 Neutral, and EN 5 El Niño.

Type DJF JFM FMA MAM AMJ MJJ JJA JAS ASO SON OND NDJ Total

Terciles approach

22 12 12 12 11 11 11 8 9 10 10 10 11 127

21 10 7 6 8 9 10 14 12 13 13 13 12 127

0 25 28 31 30 27 26 25 26 23 24 23 23 311

1 11 12 9 9 11 10 11 11 13 11 11 11 130

2 10 9 10 10 10 11 10 10 9 10 11 11 121

CPC method

LN 21 18 17 13 16 15 18 18 18 20 22 22 218

N 23 29 37 43 37 38 35 35 30 26 22 22 377

EN 24 21 14 12 15 15 15 15 20 22 24 24 221
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scenario, including the east–west signal for the Weak

El Niño composites, although the Strong El Niño
warm anomalies are considerably more prominent than

the cool anomalies.

The DJF precipitation (Prcp) composites (Fig. 5)

offers a more striking contrast between Strong

La Niña and Strong El Niño conditions (r 5 20.83)

with dry (wet) conditions across the southern tier of

CONUS during Strong La Niña (Strong El Niño)
events. The Weak cases are also anticorrelated with

each other (r 5 20.72). Interestingly, the Weak and

Strong La Niña composites are moderately well cor-

related (r 5 0.61) while the Weak and Strong El Niño
composites are not correlated (r 5 0.17). Generally

speaking, the Strong events tend to have dispropor-

tionately extreme impacts in Texas and Florida, whereas

the Weak case impacts tend to be more severe in the

Southwest.

b. DJF dynamics

Figure 6 examines the dynamical signals associated

with the composites in Figs. 3–5. The ERSSTv5 anom-

alies (shading) show the variations in strength between

the ENSO event types. The ocean patterns are similar

between Weak and Strong La Niñas with only the

amplitude in the equatorial Pacific changing. The pat-

terns shift spatially for El Niño; however, only the Strong
El Niño events have warming in the eastern Pacific near

Ecuador and Peru.

OLR (Lee 2017) is used as a proxy for tropical con-

vection. That convection provides the critical bridge

between the equatorial SST anomalies and the ex-

tratropical circulation that affects the United States

(Chiodi and Harrison 2013). The patterns are gen-

erally as expected. Enhanced convection (negative

OLR; green contours) occurs over the warm equa-

torial Pacific SST anomalies during Strong El Niño
events (Fig. 6b) with compensating subsidence (pos-

itive OLR; brown contours) to the north, south, and

west. This pattern is reversed during La Niña. The
OLR differences between Weak and Strong La Niña
are subtle, but larger differences appear between

Weak El Niño and Strong El Niño. Barely any of the

OLR anomalies are significant during Weak El Niño,
while the full pattern is significant during Strong

El Niño.

FIG. 4. As in Fig. 3, but for DJF mean monthly minimum temperature.
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The 500-hPa geopotential height anomalies (blue/red

contours) show the extratropical Rossby wave trains

forced by the changes in the SSTs and anomalous

convection. This wave train originates with a ridge

over the central North Pacific during La Niña and a

trough during El Niño. Subtle variations in these

features affect the downstream impacts over the

United States. Even though the convective anomalies

are similar betweenWeak and Strong La Niña events,
the wave train is more robust during Strong events.

That difference is consistent with the differences in

Figs. 3 and 4. For El Niño, the wave train is again

more prominent during Strong events, but it is also

shifted eastward relative to the Weak events. That

eastward shift places the ridge closer to the northern

plains instead of the mountain west, and the trough is

over the southeastern United States instead of the

Northeast. These differences are consistent with the

variations in Tmin and Tmax, which are more north–

south for Strong events and east–west for Weak events

(Figs. 3b,d and 4b,d). The trough across the southern

United States during Strong El Niño (Fig. 6b) also

suggests a greater enhancement of the subtropical jet,

which would also lead to more precipitation there

(Fig. 5b).

c. JJA composites

The composite patterns during JJA are considerably

weaker than their DJF counterparts. Interestingly, the

most prominent features for both Tmax (Fig. 7) and

Tmin (Fig. 8) occur in the upper Midwest in Strong La

Niña and in the northern plains in Weak El Niño, but
with no strong composite anomalies during Weak La

Niña or Strong El Niño. The signals are anticorrelated
with each other, with a correlation coefficient of

about 20.63 for both Tmax and Tmin. The JJA Prcp

composites (Fig. 9) are more active yet less coherent,

with the sharpest contrast occurring in California

between Strong La Niña and Strong El Niño events,

although the associated rainfall deviations in abso-

lute terms are quite low during California sum-

mers. In addition, the Strong La Niña precipitation

FIG. 5. As in Fig. 3, but for DJF monthly precipitation, reported as percent deviations. Dark gray areas

indicate grid cells for which the 15-yr running mean was equal to zero for at least one 15-yr period in the period

of record.
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anomalies show a tendency for dryness in the central

United States, while the Weak El Niño precipitation

anomaly pattern exhibits wetter conditions in this

region.

d. JJA dynamics

Figure 10 shows the dynamical drivers for each of

the ENSO phases during JJA. As in the United States

composites, the signals in Fig. 10 are considerably

weaker than their DJF counterparts. The JJA Weak

La Niña composite has only a small area of cool SST

anomalies on the Equator that are statistically sig-

nificant. The Weak El Niño composite has a larger

area of significant anomalies, but their amplitude is

still very small (,0.68C). As a result, neither has sig-

nificant OLR anomalies, let alone significant extra-

tropical circulations, consistent with the weak anomalies

in Figs. 7–9. The Strong JJA composites exhibit more

of the canonical SST patterns. However, the OLR

anomalies are much weaker than in DJF, especially

for La Niña. The limited extratropical response is also

largely confined to the Southern Hemisphere, which

makes sense as that would be the winter hemisphere

with stronger extratropical variability. The more lo-

calized SST changes in the eastern Pacific do seem

to have some impact on western U.S. summer pre-

cipitation, possibly through changes in sea level pres-

sure patterns and associated low-level moisture flux

patterns.

e. ENSO normals

In addition to the ENSO composites, we use the

most recent OCN to define the ENSO normals. Thus,

the ENSO normals are recentered around an oper-

ationally updated ‘‘alternative’’ normal that can be

appreciably different from the most recent 30-yr nor-

mals. Figure 11 shows the OCN values relative to the

corresponding 1981–2010 normals for January. The

resulting difference is a proxy for the recent trends.

The most prominent temperature signal is a warming

in New England in both Tmax and Tmin fields, in

addition to somewhat warmer conditions in California

and cooler conditions in much of the Midwest. Drier

conditions are reported in the Southeast, New England,

much of the Great Plains, and California, while some-

what wetter conditions prevail in parts of the Midwest

FIG. 6. Composite anomalies for DJF ENSO events of ERSSTv5 (shading), monthly OLR (Lee 2017)

(green/brown contours), and NCEP–NCAR reanalysis (Kalnay et al. 1996) 500-hPa geopotential heights

(blue/red contours). OLR is contoured every 10Wm22 with negative (cloudy) values in green and positive

(clear) values in brown. Geopotential height is contoured every 20 m with positive values in red and negative

in blue. Statistical significance is evaluated at the 90% level using a two-tailed Monte Carlo method following

Schreck et al. (2013). Insignificant ERSST values are masked in gray, while insignificant values for the other

variables are dashed.
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and Intermountain West. For July (Fig. 12) some-

what warmer conditions cover much of CONUS,

whereas drier conditions are found in the Northwest

and northern Great Plains and wetter conditions stretch-

ing across the southern half of CONUS and into the

Northeast.

It is instructive to look at the broad array of

parameters that will be available for a single grid

cell. Table 3 shows the Tmax, Tmin, and Prcp

ENSO normals for January in absolute units of 8C
and mm as well as their associated composite mean

and quantile anomalies (8C and percent deviations)

for six cities across the CONUS. For Dallas, Texas,

the Strong La Niña (Strong El Niño) normal for

January Prcp is 56.6 mm (83.7 mm), which corre-

sponds to a 219.6% (118.9%) deviation from that

month’s OCN value of 70.4mm. For Seattle, Wash-

ington, the interquartile range (IQR) for Strong El

Niño Tmax composites is 0.28–1.98C, suggesting a

likelihood greater than 75% of warmer-than-normal

conditions. However, the vast majority of IQRs

include zero, which, along with the 10% and 90%

level values, indicates fairly wide ranges of expected

values overall. The tabular results for January Tmax

in Orlando are also illustrated graphically in Fig. 1.

La Niña (El Niño) months clearly tend toward warmer

(cooler) conditions as indicated by the observations in

Figs. 1a–c as well as the resulting quantile levels in

Fig. 1d.

5. Discussion and conclusions

Climatological normals are indispensable plan-

ning tools in a wide variety of industries. Most often,

they are used as implicit forecasts of what meteo-

rological conditions may be expected when other

methods lack skill. However, the rapid change of our

current climate has reduced the already limited skill

of traditional 30-yr normals. Following other recent

studies (e.g., Huang et al. 1996; Arguez et al. 2013),

we implement the optimal climate normal (OCN),

which uses a shorter averaging period (10 years for

temperature and 15 years for precipitation) to better

adapt to the changing climate. After secular climate

change, the most predictable component of the cli-

mate season is arguably ENSO and its impacts. In

FIG. 7. As in Fig. 3, but for JJA monthly mean maximum temperature.
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this study, we add composites of ENSO impacts

to the OCN in order to provide users with a picture

of what conditions may look like in our current

climate when a particular phase of ENSO occurs.

Users may then cross reference these ENSO nor-

mals with external forecasts of ENSO to better

understand the upcoming climate and make better

decisions.

The most critical underpinnings of the ENSO nor-

mals are the methods used to identify both the climate

change and the ENSO components. Several methods

of ‘‘alternative’’ or ‘‘experimental’’ normals have been

proposed, including the OCN, hinge-fit, N-yr averages,

weighted 30-yr averages, and spectral filtering (Livezey

et al. 2007; Arguez and Vose 2011; Arguez et al. 2013).

We chose the OCN because of its balance of simplic-

ity and skill, including preliminary findings suggesting

that updated 10-yr (15 yr) averages for temperature

(precipitation) performed well as a predictor of fu-

ture climate conditions using the nClimGrid database

(R. Vose 2018, personal communication). We also used

the OCN for calculating the anomalies for our ENSO

composites, ensuring that the climate change and

ENSO composite components of our analysis are

consistent.

For identifying ENSO, we used the widely accepted

ONI. More sophisticated ENSO indices exist, some of

which might have stronger ties to extratropical impacts

in the United States and elsewhere (e.g., Wolter and

Timlin 2011; Chiodi and Harrison 2013). However,

ONI remains the ‘‘official’’ index used by NOAA for

identifying ENSO events (L’Heureux et al. 2018), which

lends the authenticity needed for developing a new

normals product. Our main deviation from CPC’s

methodology for identifying events was in the index

threshold. CPC uses a fixed 0.58C threshold and does

not classify events by strength. However, the impacts

of ENSO are known to be related in part to the

strength of the events, as confirmed by the results of

this study. We also needed to produce ENSO normals

for all 12 months, and thus sample size considerations

were of critical importance. ENSO has a marked an-

nual cycle, so the 0.58C threshold would have left too

few events during the summer months. We instead

used two sets of thresholds: 1) the terciles of ONI for

each month were used to define El Niño and La Niña

FIG. 8. As in Fig. 3, but for JJA monthly mean minimum temperature.
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events, and 2) the sextiles (top and bottom one-sixth)

were used to differentiate Weak from Strong events.

These thresholds come out to approximately 60.58
and 61.08C during the peak winter months (Table 1).

The strong variations in the composites for Strong and

Weak events in this study support the validity of these

separations.

An interesting benefit of calculating these ENSO

normals has been quantifying the relative contribu-

tions of ENSO and secular change. For each month

and variable, we calculate the mean absolute value

of the La Niña and El Niño composites (E) and com-

pared it to the absolute value of the corresponding

climate change contribution (C), as represented by

the difference between the OCN value and the 1981–

2010 climate normal (i.e., the values in Figs. 11 and 12

but for all months). The resulting fields (not shown)

of E/(E 1 C) vary a great deal across space and

months. Generally, the relative contributions of E

and C are comparable in a CONUS-wide-average

sense, with a slight tendency toward C for all 3 vari-

ables, especially for Tmin. The primary exception to

this rule is winter months, for which E is slightly more

impactful than C for all 3 variables. Note that the

impact of C is a function of the proximity of the last

year of the period of record (i.e., 2017) to the end

of the previous decade (i.e., 2010). Thus, while these

characterizations represent a snapshot of a time-

dependent relationship, it is clear that both effects

need to be accounted for when planning for real-time

ENSO impacts.

In addition to the composites and OCN, the

quantile values provide users with a realistic range

of potential impacts for their locations of interest.

Although composites reveal broad areas that are

significantly different from zero in a mean sense,

the distributions themselves virtually always in-

clude at least a few events with anomalies of the

opposite sign. Generally speaking, the ranges of

potential impacts for precipitation and temperature

are rather broad; users of this information need to

be aware of this important characteristic of the un-

derlying data.

For example, consider the drier-than-normal win-

tertime conditions experienced in Southern California

during the StrongElNiño event of 2015/16. It was widely

FIG. 9. As in Fig. 5, but for JJA monthly precipitation.
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expected that this event would bring much-needed relief

to Southern California, which was in the midst of a

multiyear drought (seeHoell et al. 2016; Siler et al. 2017;

Paek et al. 2017). The nClimGrid readings for SanDiego

(32.72928N, 117.14588W as in Table 3) for December,

January, and February were 27, 82, and 3mm, respec-

tively. While the seasonal total was 34% drier than the

corresponding ENSO normal total for Strong El Niño
events and 18% drier than the OCN total, the monthly

percent deviations relative to the corresponding OCN

experienced pronounced swings from -44% inDecember

to 1122% in January to 294% in February. While the

December value was within the IQR, albeit in the

lower end, the January reading was above the IQR

yet below the 90% quantile (see Table 3), and the

February reading was well below the 10% quantile for

Strong El Niño events. Importantly, our results in-

dicate that monthly precipitation composites over

DJF are not significantly different from zero almost

anywhere in California for Strong El Niño or Strong

La Niña events (see Fig. 5), whereas virtually all

(most) areas of Southern California experience sig-

nificantly wetter-than-normal (drier than normal)

conditions during Weak El Niño (Weak La Niña)
events in a composite sense. Furthermore, the sea-

sonal percent deviation value of 218% (relative to

the OCN total) is wetter than the lower quartile

for December, January, and February distributions

during Strong El Niño events. Therefore, notwith-

standing significant month-to-month swings, our re-

sults indicate that the wintertime dryness experienced

in Southern California during the Strong El Niño
event of 2015/16 was reasonably within the realm of

expectation, illustrating one way that our analysis can

place observed ENSO-related impacts into a histori-

cal perspective.

The variables in this study (Tmin, Tmax, and total

precipitation) represent a small subset of those that

are often included in traditional normals. Our study

was limited by the temporal resolution of the current

monthly nClimGrid data. Future extensions of this

product suite will be facilitated by a forthcoming daily

version of the gridded product. Among the most valu-

able variables being considered are heating, cooling,

and growing degree-days. Counts of threshold days

(e.g., Tmax $ 328C, Tmin # 08C, precipitation $ 0)

would also be feasible, along with estimating climate

change and ENSO impacts on the length of the growing

season.

Numerous studies have shown that different ‘‘fla-

vors’’ of ENSO, such as the ENSO Modoki (e.g., see

Ashok et al. 2007), and/or interactions between

ENSO and the Pacific decadal oscillation or the At-

lantic multidecadal oscillation (e.g., see McCabe

et al. 2004) can lead to varying ENSO-related impacts

across the globe. At this time, our period of record is

FIG. 10. As in Fig. 6, but for JJA.
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not sufficiently long enough to further stratify our

composites by ENSO types or multidecadal influ-

ences; the inability to account for these important

factors is the primary limitation of this new product

line. However, it would be worthwhile to pursue fu-

ture work on the feasibility of further stratification,

especially as additional ENSO events are added to

the record.

FIG. 11. Differences between the January OCN and the cor-

responding 1981–2010 normal for (a) mean monthly maximum

temperature (8C), (b) mean monthly minimum temperature

(8C), and (c) monthly precipitation (mm). Temperature OCN

are computed over 2008–17 and precipitation OCN are com-

puted over 2003–17. (d) As in (c), but reported as a percent

deviation relative to the January OCN. Areas shaded in dark

gray indicate grid cells for which the OCN and/or the 1981–

2010 normal was less than 5 mm.

FIG. 12. As in Fig. 11, but for July.
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